资源类型

期刊论文 1140

年份

2023 71

2022 82

2021 77

2020 75

2019 59

2018 50

2017 47

2016 46

2015 56

2014 51

2013 45

2012 49

2011 45

2010 57

2009 58

2008 49

2007 50

2006 29

2005 31

2004 21

展开 ︾

关键词

数学模型 13

模型试验 9

数值模拟 8

模型 7

COVID-19 4

不确定性 4

DX桩 3

GM(1 3

计算机模拟 3

1)模型 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

k-ε模型 2

临震信号 2

云模型 2

人员疏散 2

展开 ︾

检索范围:

排序: 展示方式:

Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model

Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 506-514 doi: 10.1007/s11705-010-0508-7

摘要: The Speziale, Sarkar and Gatski Reynolds Stress Model (SSG RSM) is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller. Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations. CFD model data in terms of the flow field, trailing vortex, and the power number are compared with published experimental results. The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM. The predicted mean velocity components in axial, radial and tangential direction are also in good agreement with experiment data. The power number predicted is quite close to the designed value, which demonstrates that this model can accurately calculate the power number in the stirred tank. Therefore, the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank, and it offers an alternative method for design and optimisation of stirred tanks.

关键词: stirred tank     fluid dynamics     numerical simulation     SSG Reynolds Stress Model     MRF    

Improved analytical model for residual stress prediction in orthogonal cutting

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 249-256 doi: 10.1007/s11465-014-0310-1

摘要:

The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann’s model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann’s model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann’s model.

关键词: residual stress     analytical model     orthogonal cutting     cutting force     cutting temperature    

Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat

REYNOLDS

《农业科学与工程前沿(英文)》 2019年 第6卷 第3期   页码 296-308 doi: 10.15302/J-FASE-2019269

摘要:

The application of spectral reflectance indices (SRIs) as proxies to screen for yield potential (YP) and heat stress (HS) is emerging in crop breeding programs. Thus, a comparison of SRIs and their associations with grain yield (GY) under YP and HS conditions is important. In this study, we assessed the usefulness of 27 SRIs for indirect selection for agronomic traits by evaluating an elite spring wheat association mapping initiative (WAMI) population comprising 287 elite lines under YP and HS conditions. Genetic and phenotypic analysis identified 11 and 9 SRIs in different developmental stages as efficient indirect selection indices for yield in YP and HS conditions, respectively. We identified enhanced vegetation index (EVI) as the common SRI associated with GY under YP at booting, heading and late heading stages, whereas photochemical reflectance index (PRI) and normalized difference vegetation index (NDVI) were the common SRIs under booting and heading stages in HS. Genome-wide association study (GWAS) using 18704 single nucleotide polymorphisms (SNPs) from Illumina iSelect 90K identified 280 and 43 marker-trait associations for efficient SRIs at different developmental stages under YP and HS, respectively. Common genomic regions for multiple SRIs were identified in 14 regions in 9 chromosomes: 1B (60–62 cM), 3A (15, 85–90, 101–105 cM), 3B (132–134 cM), 4A (47–51 cM), 4B (71–75 cM), 5A (43–49, 56–60, 89–93 cM), 5B (124–125 cM), 6A (80–85 cM), and 6B (57–59, 71 cM). Among them, SNPs in chromosome 5A (89–93 cM) and 6A (80–85 cM) were co-located for yield and yield related traits. Overall, this study highlights the utility of SRIs as proxies for GY under YP and HS. High heritability estimates and identification of marker-trait associations indicate that SRIs are useful tools for understanding the genetic basis of agronomic and physiological traits.

关键词: genome-wide association study (GWAS)     heat tolerance     spectral reflectance     spring wheat    

Kinetic energy based model assessment and sensitivity analysis of vortex induced vibration of segmental

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 480-501 doi: 10.1007/s11709-017-0435-5

摘要: In this paper, semi 3D models for segmental Bridge decks are created in ABAQUS CFD program with the support of MATLAB codes to simulate and analyze vortex shedding generated due to wind excitation through considering the stationary position of the deck. Three parameters (wind speed, deck streamlined length and dynamic viscosity of the air) are dedicated to study their effects on the kinetic energy of the system in addition to the shapes and patterns of the vortices. Two benchmarks from the literature Von Karman and Dyrbye and Hansen are considered to validate the vortex shedding aspects for the CFD models. Good agreement between the results of the benchmarks and the semi 3D models has been detected. Latin hypercube experimental method is dedicated to generate the surrogate models for the kinetic energy of the system and the lift forces. Variance based sensitivity analysis is utilized to calculate the main sensitivity indices and the interaction orders for all the three parameters. The kinetic energy approach performed very well in revealing the rational effects and the roles of each parameter in the generation of vortex shedding and predicting vortex induced vibration of the deck.

关键词: vortex induced vibration     reynolds number     kinetic energy     vorticity     latin hypercube sampling    

Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer

Xinyu HUI, Yingjie XU, Weihong ZHANG

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 475-483 doi: 10.1007/s11465-020-0590-6

摘要: In this study, the micro curing residual stresses of carbon fiber-reinforced thermoset polymer (CFRP) composites are evaluated using a multiscale modeling method. A thermochemical coupling model is developed at the macroscale level to obtain the distributions of temperature and degree of cure. Meanwhile, a representative volume element model of the composites is established at the microscale level. By introducing the information from the macroscale perspective, the curing residual stresses are calculated using the microscale model. The evolution of curing residual stresses reveals the interaction mechanism of fiber, matrix, and interphase period during the curing process. Results show that the curing residual stresses mostly present a tensile state in the matrix and a compressive state in the fiber. Furthermore, the curing residual stresses at different locations in the composites are calculated and discussed. Simulation results provide an important guideline for the analysis and design of CFRP composite structures.

关键词: CFRP     curing residual stress     multiscale modeling     finite element method    

Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 429-447 doi: 10.1007/s11709-022-0913-2

摘要: Recently, the application of detrital coral as an alternative to natural aggregates in marine structures has attracted increased attention. In this study, research on the compressive performance of coral aggregate concrete (CAC) confined using steel stirrups with anti-rust treatment was experimentally conducted. A total of 45 specimens were cast, including 9 specimens without stirrups and under different strength grades (C20, C30, and C40) and 36 specimens under different strength grades (C20, C30, and C40). Moreover, three stirrup levels (rectangular, diamond-shaped compound, and spiral stirrups) and different stirrup spacings (40, 50, 60, and 70 mm) were used. Subsequently, the stress−strain curves of specimens subjected to axial loading were measured. The effects of the stirrup spacing and stirrup configurations on the stress and strain were investigated, respectively, and the lateral effective stress of the different stirrups was calculated based on the cohesive-elastic ring model and modified elastic beam theory. Moreover, a damage-constitutive model of CAC considering the lateral stress was set up based on damage mechanics theory. The results indicated an increase in the stress and strain with a decrease in the stirrup spacing, and the adopted stirrup ratio had a better strengthening effect than the different concrete grades, and the variation in the deformation was restricted by the performance of coral coarse aggregate (CA). However, an increment in the lateral strain was observed with an increase in the axial strain. The lateral stress model showed a good agreement with the experimental data, and the proposed damage-constitutive model had a good correlation with the measured stress−strain curves.

关键词: coral aggregate concrete     stress−strain curves     lateral effective stress     peak stress     axial−lateral curves     damage-constitutive model.    

Predictive model to decouple the contributions of friction and plastic deformation to machined surfacetemperatures and residual stress patterns in finish dry cutting

Subhash ANURAG, Yuebin GUO,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 247-255 doi: 10.1007/s11465-010-0097-7

摘要: Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement. Furthermore, the individual contribution of tool/work friction and plastic deformation of work materials to surface temperature is very difficult to quantify because the measured temperature is always the resultant temperature. This lack of understanding on the temperature distribution blocks the design of effective cutting tool geometries and materials to minimize surface temperature. This study provides a finite element method based on a predictive model to decouple the contributions of tool/work friction and material plastic deformation to surface temperature in a dry cutting process. The study shows that the plastic deformation of work material contributes to the majority of surface temperature, whereas the tool/work friction contribution is secondary. High temperatures are produced when more materials are plowed under the cutting edge. A large tool/work friction leads to higher surface temperatures, and the use of a cutting tool with physical properties in process simulation significantly improves the accuracy of predicted surface temperatures. Residual stress reversal from subsurface maximum residual to surface maximum residual stress may occur when tool/work friction increases.

关键词: surface temperature     friction     residual stress     finite element analysis (FEA)     dry cutting     tool property    

The formation mechanism and the influence factor of residual stress in machining

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 265-269 doi: 10.1007/s11465-014-0311-0

摘要:

Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses in cutting. An important conclusion is drawn that the accumulated plastic strain is the main factor which determines the nature and the magnitude of surface residual stresses in the workpiece. On the basis of the analytical model for residual stress, a series of simulations for residual stress prediction during cutting AISI 1045 steel are implemented in order to obtain the influences of cutting speed, depth of cut and tool edge radius on surface residual stress in the workpiece. And these influences are explained from the perspective of formation mechanism of residual stress in cutting. The conclusions have good applicability and can be used to guide the parameters selection in actual production.

关键词: residual stress     analytical model     strain     plastic     cutting parameter    

Research and development of a high-quality thermal-stress online monitoring model for the 600 MW turbine

ZHANG Hengliang, XIE Danmei, XIONG Yangheng, SUN Kunfeng

《能源前沿(英文)》 2007年 第1卷 第3期   页码 322-326 doi: 10.1007/s11708-007-0047-1

摘要: To monitor and control its thermal state, a rotor s temperature and thermal stress fields must be calculated in real time. After some reasonable assumptions and simplification, iterative models of the rotor s temperature and thermal stresses were obtained with an integral transform based on a two-dimensional axis-symmetry thermal conduction differential equation. The models can deal with some nonlinear factors such as material and boundary condition. An example is given to compare results computed by the finite element method (FEM) and one-dimensional models. The result shows that the analytical model gained has high quality and the computing course is very short. The iterative formulas could be used not only to analyze the rotor’s thermal states of turbine, but to monitor and control them online. The method adopted can be used to analyze the thermal state of other axis-symmetry objects having similar boundary conditions.

Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 609-628 doi: 10.1007/s11709-018-0452-z

摘要: In this paper, thermal fluid structure-interaction (TFSI) and coupled thermal-stress analysis are utilized to identify the effects of transient and steady-state heat-transfer on the vortex induced vibration and fatigue of a segmental bridge deck due to fire incidents. Numerical simulations of TFSI models of the deck are dedicated to calculate the lift and drag forces in addition to determining the lock-in regions once using fluid-structure interaction (FSI) models and another using TFSI models. Vorticity and thermal convection fields of three fire scenarios are simulated and analyzed. Simiu and Scanlan benchmark is used to validate the TFSI models, where a good agreement was manifested between the two results. Extended finite element method (XFEM) is adopted to create 3D models of the cable stayed bridge to simulate the fatigue of the deck considering three fire scenarios. Choi and Shin benchmark is used to validate the damaged models of the deck in which a good coincide was seen between them. The results revealed that TFSI models and coupled thermal-stress models are significant in detecting earlier vortex induced vibration and lock-in regions in addition to predicting damages and fatigue of the deck due to fire incidents.

关键词: fire scenario     transient heat transfer     TFSI model     coupled thermal-stress     XFEM    

A time−space porosity computational model for concrete under sulfate attack

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0985-7

摘要: The deterioration of the microscopic pore structure of concrete under external sulfate attack (ESA) is a primary cause of degradation. Nevertheless, little effort has been invested in exploring the temporal and spatial development of the porosity of concrete under ESA. This study proposes a mechanical–chemical model to simulate the spatiotemporal distribution of the porosity. A relationship between the corrosion damage and amount of ettringite is proposed based on the theory of volume expansion. In addition, the expansion strain at the macro-scale is obtained using a stress analysis model of composite concentric sphere elements and the micromechanical mean-field approach. Finally, considering the influence of corrosion damage and cement hydration on the diffusion of sulfate ions, the expansion deformation and porosity space−time distribution are obtained using the finite difference method. The results demonstrate that the expansion strains calculated using the suggested model agree well with previously reported experimental results. Moreover, the tricalcium aluminate concentration, initial elastic modulus of cement paste, corrosion damage, and continuous hydration of cement significantly affect concrete under ESA. The proposed model can forecast and assess the porosity of concrete covers and provide a credible approach for determining the residual life of concrete structures under ESA.

关键词: expansion deformation     porosity     internal expansion stress     external sulfate attack     mechanical–chemical coupling model    

Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds

Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG

《能源前沿(英文)》 2010年 第4卷 第4期   页码 546-552 doi: 10.1007/s11708-010-0116-8

摘要: Forced convection heat transfer of single-phase water in helical coils was experimentally studied. The testing section was constructed from a stainless steel round tube with an inner diameter of 10 mm, coil diameter of 300 mm, and pitch of 50 mm. The experiments were conducted over a wide Reynolds number range of 40000 to 500000. Both constant-property flows at normal pressure and variable-property flows at supercritical pressure were investigated. The contribution of secondary flow in the helical coil to heat transfer was gradually suppressed with increasing Reynolds number. Hence, heat transfer coefficients of the helical tube were close to those of the straight tube under the same flow conditions when the Reynolds number is large enough. Based on the experimental data, heat transfer correlations for both incompressible flows and supercritical fluid flows through helical coils were proposed.

关键词: convective heat transfer     helical coils     high Reynolds number     supercritical pressure     variable property    

An improved algorithm for McDowell’s analytical model of residual stress

null

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 150-155 doi: 10.1007/s11465-014-0295-9

摘要:

The analytical model for two-dimensional elastoplastic rolling/sliding contact proposed by McDowell is an important tool for predicting residual stress in rolling/sliding processes. In application of the model, a problem of low predicting precision near the surface layer of the component is found. According to the volume-constancy of plastic deformation, an improved algorithm for McDowell’s model is proposed in order to improve its predicting accuracy of the surface residual stress. In the algorithm, a relationship between three normal stresses perpendicular to each other at any point within the component is derived, and the relationship is applied to McDowell’s model. Meanwhile, an unnecessary hypothesis proposed by McDowell can be eliminated to make the model more reasonable. The simulation results show that the surface residual stress predicted by modified method is much closer to the FEM results than the results predicted by McDowell’s model under the same simulation conditions.

关键词: residual stress     McDowell’s model     volume-constancy of plastic deformation     FEM     elastoplastic rolling/sliding contact    

A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality

Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 181-186 doi: 10.1007/s11465-013-0257-7

摘要:

This paper demonstrates the application of a new multiaxial creep damage model developed by authors using stress traixiality to predict the failure time of a component made of 0.5%Cr-0.5%Mo-0.25%V low alloy steel. The model employs strain energy density and assumes that the uniaxial strain energy density of a component can be easily calculated and can be converted to multi-axial strain energy density by multiplying it to a function of stress trixiality which is a ratio of mean stress to equivalent stress. For comparison, an elastic-creep and elastic-plastic-creep finite element analysis (FEA) is performed to get multi-axial strain energy density of the component which is compared with the calculated strain energy density for both cases. The verification and application of the model are demonstrated by applying it to thin tube for which the experimental data are available. The predicted failure times by the model are compared with the experimental results. The results show that the proposed model is capable of predicting failure times of the component made of the above-mentioned material with an accuracy of 4.0%.

关键词: elastic-creep     elastic-plastic-creep     stress triaxiality     life prediction     pressure vessels     finite element analysis (FEA)    

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1097-1109 doi: 10.1007/s11709-020-0634-3

摘要: Shear stress distribution prediction in open channels is of utmost importance in hydraulic structural engineering as it directly affects the design of stable channels. In this study, at first, a series of experimental tests were conducted to assess the shear stress distribution in prismatic compound channels. The shear stress values around the whole wetted perimeter were measured in the compound channel with different floodplain widths also in different flow depths in subcritical and supercritical conditions. A set of, data mining and machine learning algorithms including Random Forest (RF), M5P, Random Committee, KStar and Additive Regression implemented on attained data to predict the shear stress distribution in the compound channel. Results indicated among these five models; RF method indicated the most precise results with the highest value of 0.9. Finally, the most powerful data mining method which studied in this research compared with two well-known analytical models of Shiono and Knight method (SKM) and Shannon method to acquire the proposed model functioning in predicting the shear stress distribution. The results showed that the RF model has the best prediction performance compared to SKM and Shannon models.

关键词: compound channel     machine learning     SKM model     shear stress distribution     data mining models    

标题 作者 时间 类型 操作

Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model

Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG

期刊论文

Improved analytical model for residual stress prediction in orthogonal cutting

null

期刊论文

Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat

REYNOLDS

期刊论文

Kinetic energy based model assessment and sensitivity analysis of vortex induced vibration of segmental

Nazim Abdul NARIMAN

期刊论文

Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer

Xinyu HUI, Yingjie XU, Weihong ZHANG

期刊论文

Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected

期刊论文

Predictive model to decouple the contributions of friction and plastic deformation to machined surfacetemperatures and residual stress patterns in finish dry cutting

Subhash ANURAG, Yuebin GUO,

期刊论文

The formation mechanism and the influence factor of residual stress in machining

null

期刊论文

Research and development of a high-quality thermal-stress online monitoring model for the 600 MW turbine

ZHANG Hengliang, XIE Danmei, XIONG Yangheng, SUN Kunfeng

期刊论文

Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed

Nazim Abdul NARIMAN

期刊论文

A time−space porosity computational model for concrete under sulfate attack

期刊论文

Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds

Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG

期刊论文

An improved algorithm for McDowell’s analytical model of residual stress

null

期刊论文

A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality

Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY

期刊论文

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

期刊论文